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1

Introduction to Dynamical Systems

1.1 Coupled Differential Equations

The study of nonlinear dynamics originates in the study of ordinary differential

equations. Some characteristics of ordinary differential equations (ODEs) are shared

by partial differential equations (PDEs) as well, so it is logical to introduce this

simpler concept first.

One mathematically interesting type of ODE is that of a coupled ODE. The word

“coupled”, indicates that the dynamics of one variable depend on the dynamics of

another at any given moment in time. The equation for a damped harmonic oscillator,

for example, may be written as

m
d2x

dt2
+ b

dx

dt
+ kx = 0 (1.1)

The mathematics of differential equations (no proof of this will be shown) dictates



that any N-th order single ODE may be re-written as N separate first-order

ODEs.

Given the substitutions of x1 = x, x2 = ẋ, ẋ1 = x2, ẋ2 = ẍ and as the above

is only second order, we note the two equations below, and claim they are a parti-

tioned version of the original equation representing the spatial oscillation of a damped

harmonic oscillator in time:

ẋ1 = x2

ẋ2 = − b

m
x2 −

k

m
x1

Although these are two separate equations, the physical properties are identical to

Equation (1.1). The system in this case is also said to be linear, as terms on the right

hand side of the equations are to first power only. Any deviation from this rule would

deem the system as nonlinear. Steven Strogatz writes1 that typical nonlinear terms

include products, powers and embedded functions of xi (the variables in question)

such as x1x2, (x1)3 or cos(x3).

An example of a nonlinear system would be the true, nonlinearised model of a

swinging pendulum given by

ẍ+
g

L
sin(x) = 0

1Nonlinear Dynamics and Chaos, pg. 6
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Due to this being a 2nd order ODE, the equivalent partitioned, coupled system,

via the aforementioned method, is

ẋ1 = x2

ẋ2 = − g
L
sin(x1)

Here, the dynamical dependence on the sin(x) function is what makes the system

nonlinear in nature.

Time could be substituted with another variable (x3, for example) and can be

introduced into a system with two other spatial equations (as say, ẋ3). For all intents

and purposes, evolution of time is constant and is usually written as ẋ3 = 1, such

that x3=constant. This convention opens up the exotic possibility for a system to

work with nonlinear time, if such a scenario demanded such a concept.

When working with coupled systems, it is necessary to consider the phase space

of the system. For two coupled equations, we work with a phase plane, which is a

plane that illustrates how values of the corresponding solutions (x1 and x2) from a

system interact with one another. Figure (5.1) is an example of what a typical phase

portrait might look like.

The true difficulty in studying nonlinear systems comes from the fact that in

treating aggregated and complex problems in math and physics, only so much may
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be done analytically. Undergraduate-level physics and mathematics problems are

spoiled with closed-form (albeit messy) solutions to most if not all problems. Non-

linear problems often require the use of numerical methods to approximate solutions.

Although not going to be covered in this thesis, the algorithms used to perform such

calculations are also worth studying in and of themselves due to the prevalence of

computer approximation errors which have been known to jeopardize results, as in

the Euler method. This issue can also impede the exacting efforts of even the most

precise algorithms.

Data obtained from numerical solutions can also be verified via experiment (in

the case of physical systems) to verify the authenticity of an algorithm and research

at various universities has been moving forward to do just that.

1.2 Fixed Points and Stability Analysis

Fixed points are a crucial aspect of dynamical systems. These points describe

where the system is no longer dynamic, almost like an oasis in a vast, uncertain,

differential-equation desert. Many researchers seek this oasis of certainty within their

research, especially when describing nonlinear, chaotic systems.

Fixed points are traditionally found using the following convention
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ẋ1 = 0

ẋ2 = 0

...

ẋn = 0

This means one must look for point(s) with no rate of change in all applicable

variables. An example is that of velocity. We recall from physics that velocity is

simply the time derivative of displacement. If we define x1 as displacement, ẋ1 is

its respective velocity. Upon contemplation of our aforementioned example of the

damped harmonic oscillator, we can make sense of this point:

ẋ1 = x2 = 0

ẋ2 = − b

m
x2 −

k

m
x1 = 0

When we solve this system, we note that the first equation tells us that x2 = 0.

Since the two ODEs are coupled, this information must combine with the second

equation which results in

− b

m
x2 = +

k

m
x1

Since we know that x2 = 0, this forces x1 and x2 both to be equal to 0. In terms

of the phase plane, this represents the point (x1, x2) = (0, 0). The point (0, 0) is

then a fixed point of the continuous system. As we will see very soon, a fixed
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point, also known as an equilibrium point of a system, can also be classified as either

a stable fixed point or an unstable fixed point. If unstable, the dynamics of the

ODEs are then halted at this fixed point until a sufficient perturbation comes along

to change its state.

This method may be reproduced for more complicated systems to arrive at fixed

points which depend on constants and parameters or even other variables. Some

systems may have one fixed point whereas others may have several. The amount

depends on the level of complication of the initial dynamical system.

The behaviour of solutions independent of location is also of particular interest.

Eigenvalues of a differential equation’s Jacobian matrix can tell us valuable informa-

tion about a system’s long-term behaviour. Indeed, the eigenvalues single-handedly

determine the stability of the fixed points for the entire system. Using the damped

harmonic oscillator once again as a template:

J =

 ∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ2
∂x1

∂ẋ2
∂x2

 =

 0 1

− k
m
− b
m



|J − Iλ| = 0→

∣∣∣∣∣∣∣∣
−λ 1

− k
m
− b
m
− λ

∣∣∣∣∣∣∣∣ = 0

−λ(−λ− b

m
) +

k

m
= 0

mλ2 + bλ+ k = 0

10



λ =
−b±

√
b2 − 4km

2m

The exact value for λ depends on the relative magnitudes of the parameters in

question (here b, k and m). Keeping in mind that this system represents the dynamics

of a damped harmonic oscillator, we recall that all of these are physical quantities.

Thus, manipulating the values of the ensemble also has a physical consequence.

One downside of the Jacobian matrix is that due to it being a linearization of the

original set of differential equations, it is only able to determine behaviour

around a fixed point. This means that for each fixed point, we must have a

separate Jacobian matrix for analysis.

1.2.1 Stability Criterion for Continuous Systems

To determine whether a fixed point is stable or unstable, we need only to look

at the sign of the eigenvalue (here, denoted by the Greek letter λ) from the Jacobian

matrix in question. If λ > 0, then the the eigenvalue is associated with an unstable

fixed point. If λ < 0, the eigenvalue is associated with a stable fixed point.

If working in a two dimensional system with two distinct eigenvalues, and if λ1 < 0,

but λ2 > 0, then we call this point a saddle point. We may use the eigenvectors

associated with given eigenvalues to show that this concept of a saddle point is com-

pletely analogous to the saddle points of 3-D surfaces encountered in an undergraduate

multivariable calculus course2.

2Saddle points are typically visualized as a vector field in the phase plane having solutions being
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We use the example from the previous section to state that in this second order

harmonic system, there are two eigenvalues:

λ1 =
−b+

√
b2 − 4km

2m

λ2 =
−b−

√
b2 − 4km

2m

We point out that provided
√
b2 − 4km is a positive, real quantity, λ2 will always

be negative. This makes λ2 a stable eigenvalue, but what of λ1? The answer lies

within the parameters we’ve set in the problem.

• If
√
b2 − 4km > b, λ1 will be positive. (λ1 is UNSTABLE)

• If
√
b2 − 4km < b, λ1 will be negative. (λ1 is STABLE)

Since we are looking at either both eigenvalues being negative, indicative of a

fully stable fixed point, or one negative and one positive, indicative of a saddle

point, it is crucial to look at all the possible eigenvalues for a particular Jacobian

matrix.

Although avoided for simplicity, it is often the case that λ is actually a function

of variables, i.e. λ = λ(x1, x2, θ, r, h). Due to this phenomenon, the coordinates in

phase space may determine whether that point is stable or unstable. This is

more dynamic than the example of simple harmonic oscillator (since its Jacobian had

no dependence on system coordinates). It is exactly this dependence on either spatial

attractive in one axis and repulsive in another axis
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or temporal coordinates that makes dynamical systems so intriguing. Oscillating

between stable and unstable states can clearly have a profound effect on any physical

system that can be described using systems of differential equations.

1.3 Bifurcation Diagrams

Strogatz defines a bifurcation as “a qualitative change in the dynamics of a

system”. Due to the fact that some coupled ODE systems have parameters which

may change in the lifetime of the system, it’s natural that signs and values of variables

may change. It is this change which causes fixed points to be created or destroyed

while maintaining the overall symmetry or asymmetry of a system. In addition, the

variations of values of parameters in a system may even change the stability of fixed

points, causing a sudden shift in the shape of the phase plane or the flow of a ẋ vs.

x plot (phase plane portrait).

One example of such a system is

ẋ = µ+ x2 (1.2)

where µ is known as a bifurcation parameter.

Now let’s suppose µ = 0, which would make ẋ = x2, which is a parabola in the

phase plane. By visually assessing the phase plane, we may also find fixed points

geometrically. Looking at ẋ vs. x, we denote fixed points as any coordinate location
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where the curve in question meets the x-axis (at ẋ=0). This occurs at the origin

again, at (0, 0). One definite fixed point is found. Any other value of µ and the

behaviour changes...

• For µ < 0, the parabola dips below the x-axis, bifurcating into a regime where

two fixed points exist.

• For µ > 0, the parabola dips above the x-axis, bifurcating into a regime where

no fixed points exists.

This is an example of a saddle-node bifurcation. Given the various shaped

curves a system may trace on the phase plane, there are different kinds of bifurcations

a system can undergo. Examples of various bifucations are illustrated in the Appendix

of this paper. Figure 5.3 shows an axis system of x vs. µ, which shows the progression

of fixed point evolution at a sweep of bifurcation parameter values . Stable branches

of fixed points are shown as solid lines whereas unstable branches of fixed points are

shown as dotted lines.

Bifurcation diagrams for linear differential equations are powerful teaching tools

for describing what can and will happen in most basic differential equation systems

with bifurcation parameters.

1.4 Exploring Higher Dimensional Stability

In the examples we have covered so far, we have only introduced points as potential

steady/unsteady equilibrium states. If we move into systems with two or more state
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variables (equivalent to additional dimensions in the phase plane), we can extend this

definition of equilibrium to other geometries, such as lines and even surfaces!

Consider the following system:

ẋ = 3y2 − x

ẏ = x2y2 − y

At equilibrium, ẋ = 0 and ẏ = 0, so

x = 3y2

y = y2x2

=⇒ x = 3y2 =⇒ y2 =
x

3

y = y2x2 =⇒ y =
x

3
x2 =⇒ y∗(x∗) =

x∗3

3

Here we do not have fixed points, but rather, fixed curves! In this case, anything

living on the curve y∗(x∗) will be stable. This example is simply a curve, but it’s

not difficult to imagine a system where the equilibrium geometry is in the form of

something intuitive (x2 + y2 = c, i.e. a circle). Incidentally, this happens so often in

studies of dynamical systems that the special name of limit cycles have been given

to systems with similar functional equilibria.
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Other combinations of coupled system can give way to generalised closed loops,

instead of perfect circles or ellipses. When a closed loop is found in the phase plane

of a differential equation, special properties of its respective solutions should

be noted.

Solutions starting either outside or inside of a limit cycle may rest along the stable

geometry in phase space or diverge. Likewise, solutions starting outside of the limit

cycles could either diverge or eventually come towards the limit cycle (shown in Figure

5.2).

This concept may be applied to familiar coordinate systems, such as: cartesian,

cylindrical, spherical and beyond. Here, a cycle may be a surface with solutions free

to roam inside of it or outside of it, but not through it !

Indeed, the Poincaré-Bendixson theorem3 states that any orbit (a solution

path) which stays in a compact region in 2D phase space approaches either a fixed

point or a periodic orbit4. In addition to this concept, the theorem makes the claim

(not proven here) that, any n-dimensional system of differential equations will

have an n-dimensional manifold representing its stable or unstable set of

orbits.

3Poincaré, H. (1892), ”Sur les courbes définies par une équations différentielle”
4The Poincaré-Bendixson theorem also states that aperiodic behaviour can only occur in systems

with 3 or more dimensions in continuous systems.
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2

Applications of Continuous

Differential Systems

The effects of chaos are visible in this phase space. By attempting to cover every

point on the manifold, the system no longer has a logical, periodic path to follow.

It attempts to be everywhere with no regard for a reversible path. Reversibility is a

property of periodic dynamical systems. The aperiodicity of deterministic differential

equations gives no regard to this concept.

2.1 Lorenz Equations and Rayleigh-Bénard Con-

vection

Originally designed to try to predict the periodicity of weather patterns, the

Lorenz equations are ultimately the resulting product of many years of work by mul-



tiple thinkers.

dX

dτ
= σ(Y −X) (2.1)

dY

dτ
= rX − Y −XZ (2.2)

dZ

dτ
= XY − bZ (2.3)

In 1916, Lord Rayleigh tried to put into mathematics a phenomenon described

by Henri Bénard and himself known as Rayleigh-Bénard convection. Rayleigh took

the Navier-Stokes equations of fluid mechanics and found a steady-state solution of

a simple temperature gradient throughout a fluid of depth H and temperature

difference ∆T . Any deviation from this steady-state solution Rayleigh simply called

unstable, and his work on the problem ended there.

Dr. Barry Saltzman revisited this problem in 1962 and tried to peer into the

behavior of all solutions, stable and unstable alike. Keeping the nonlinear terms

of the Navier-Stokes equations of fluid mechanics, Saltzman used his math back-

ground to convert the complicated system of nonlinear, partial differential equations

to a set of nonlinear, ordinary differential equations using a technique known as the

Galerkin method. The creative credit for this goes to Boris Galerkin, the Russian

mathematician behind this technique.

The Galerkin method is well-known in the applied math community as a method
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of converting a continuous operator problem to a discrete problem. Today we consider

the “Finite Element Method (FEM)” of numerical computing as a product of the

Galerkin method. This differs from the “Finite Difference Method (FDM)” in that

the FDM is an approximation to the differential equation and the FEM

is an approximation to its solution.

Although Saltzman derived the original set of ordinary differential equations

shown in the beginning of this section, Ed Lorenz in 1963 decided to explore it fur-

ther. Lorenz, a meterologist by training, numerically simulated the equations on his

office computer in an attempt to understand weather system periodicity. He was nat-

urally surprised to find that even by tweaking the initial conditions of the differential

equations in the slightest, did he witness profound differences in solutions. Initially

thinking this was an error on his Royal McBee LGP-30 computer, Lorenz explored

this further, playing with values of the parameters and initial conditions.

Lorenz placed his findings in a paper titled “Deterministic Nonperiodic Flow”,

published in 1963. Using both linearisation theory and numerical methods on

the nonlinear Lorenz equations, Lorenz explored the behaviour of the eigenvalues

and finds a dependence of parameters upon the system’s behaviour.

Defined below are relevant descriptions of the parameters studied:

• σ = Prandtl number = Ratio of momentum diffusivity (kinematic viscosity)

and thermal diffusivity

• r = normalised Rayleigh number = Ra
Rac

= Ratio of Rayleigh number and critical
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Rayleigh number (Rac), which is the Rayleigh number defined by the offset of

convection

• b = 4
1+a2

= Normalised aspect ratio of pre-defined1 two-dimensional convective

system

2.1.1 Stability Analysis

A cleaner representation of the Lorenz equations is:

ẋ = σ(y − x) (2.4)

ẏ = rx− y − xz (2.5)

ż = xy − bz (2.6)

When seeking this system’s fixed2 points (denoted by x∗, y∗, z∗), we note that

x∗ = y∗ = z∗ = 0 is a trivial solution of the problem. To find the less obvious

points, we set each equation in the ensemble equal to zero, a method described in our

introductory section. Simple algebra illustrates the process:

ẋ = 0 =⇒ σ//y = σ//x

1As defined in Saltzman’s 1962 paper, Finite Amplitude Free Convection as an Initial Value
Problem

2coordinate points in space such that ẋ = ẏ = ż = 0

20



ẏ = 0 =⇒ rx− xz = +y

ż = 0 =⇒ xy = bz

At equilibrium...

x = y

y = rx− xz

xy = bz

Since x = y and because these equations are coupled...

=⇒ x = rx− xz =⇒ x = x(r − z) =⇒ 1 = r − z

=⇒ x2 = bz

Rearranging...

=⇒ z = r − 1

Substituting...

=⇒ x2 = b(r − 1)

21



We finally have x∗ = ±
√
b(r − 1). And since x = y, we can say x∗ = y∗. We also

collect the independent equation for z and add it to our repertoire to introduce the

grand ensemble of equilibria:

x∗ = ±
√
b(r − 1)

y∗ = ±
√
b(r − 1)

z∗ = r − 1

One should immediately see that due to the magnitudes of the parameters b and

r, the locations of the fixed points in phase space depend on given values of the

parameters. One may also observe that the parameter σ was quickly eliminated,

illustrating the independence of the Prandtl number in the determination

of equilibria in the full Lorenz system. Now that we have all3 the equilibria

points (steady and unsteady alike, thanks to the analytic method above), we wish to

categorise them further.

To analyse the Lorenz system in this more advanced manner, it is useful to derive

the Jacobian matrix of partial differentials for the Lorenz equations. The general

form4 of a Jacobian matrix (J ) in three dimensions is:

3Aside from the trivial solution. In the language of differential equations, the “trivial solution”
is jargon for x=0, y=0, z=0, where the Lorenz system is trivially at equilibrium.

4where ẋixj
denotes the derivative of the ith equation with respect to the jth variable
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J =


ẋ1x1 ẋ1x2 ẋ1x3

ẋ2x1 ẋ2x2 ẋ2x3

ẋ3x1 ẋ3x2 ẋ3x3


So in the case of the Lorenz system, the Jacobian matrix (J ) may be written

more simply as...

J =


ẋx ẋy ẋz

ẏx ẏy ẏz

żx ży żz

 =⇒ J =


−σ σ 0

(r − z) −1 −x

y x −b


We recall our three equilibrium points and establish notation for each separate

Jacobian matrix (J1, J2, J3), corresponding to each separate fixed point. In addition,

as the reader will see, we will set Γ =
√
b(r − 1) to simplify our analysis.

J1 = J(0,0,0) =


−σ σ 0

r −1 0

0 0 −b



J2 = J(Γ,Γ,r−1) =


−σ σ 0

1 −1 −Γ

Γ Γ −b
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J3 = J(−Γ,−Γ,r−1) =


−σ σ 0

1 −1 Γ

−Γ −Γ −b


As performed in Section 1.2 of this thesis, we seek to establish the behaviour of

the eigenvalues specific to each Jacobian matrix (J1, J2, J3), and thus, repeat the

mathematics:

|J1 − Iλ1| = 0→

∣∣∣∣∣∣∣∣∣∣∣∣

−σ − λ1 σ 0

r −1− λ1 0

0 0 −b− λ1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

|J2 − Iλ2| = 0→

∣∣∣∣∣∣∣∣∣∣∣∣

−σ − λ2 σ 0

1 −1− λ2 −Γ

Γ Γ −b− λ2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

|J3 − Iλ3| = 0→

∣∣∣∣∣∣∣∣∣∣∣∣

−σ − λ3 σ 0

1 −1− λ3 Γ

−Γ −Γ −b− λ3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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Characteristic equation for J1:

λ1
3 + λ1

2(σ + b+ 1) + λ1(b+ σ + σb+ σr)− σrb+ σb = 0

Characteristic equation for J2:

λ2
3 + λ2

2(σ + b+ 1) + λ2(Γ2 + b+ σb) + 2σΓ2 = 0

Characteristic equation for J3:

λ3
3 + λ3

2(σ + b+ 1) + λ3(Γ2 + b+ σb) + 2σΓ2 = 0

These equations would not be easily solvable without the advent of computerised

symbolic algebraic manipulation. When solved with Wolfram’s Mathematica, we see

mathematical results that verify the physical state. If r < 1, then the solution decays

to the center of the phase plane to a fixed point. This represents the non-convective

state.

If r > 1, two of the eigenvalues appear as complex numbers. Complex numbers,

in the field of eigenvalue analysis, mean that solutions have tendencies for oscillation

between solutions. Indeed, once we enter the chaotic realm of the Lorenz equations,

solutions span an area known as that Lorenz Attractor (as seen in Figure 5.6).

Unfortunately for the analytic purist, this is as far as we may go in manually as-

sessing the properties of the Lorenz equations. Studies of group theory in mathematics

have proven that it is not possible to solve for any polynomials past certain quintic

(5th power) polynomials. What this means is that these methods described here
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cannot be applied to coupled dynamical systems with more five sets of

coupled linear or nonlinear differential equations.

However intelligent, motivated and dedicated to their trades, mathematicians and

physicists from the earth 20th century did not have the luxury of computing power.

This ability needed to be developed, fostered and understood. This was primarily

the reason why Ed Lorenz was able to assess what he did. Standing on the shoulder

of giants, Lorenz used a computer to place the final straw that broke the proverbial

camel’s back, revealing in its fallout the beginnings of numerical aperiodicity.

Lorenz goes on to show in his paper how limiting values of parameters cause

eigenvalues to switch signs and thus rock back and forth between stability and

instability. Indeed, by plotting a bifurcation diagram numerically, Lorenz was able

to show that the system undergoes a Hopf bifurcation at a particular value of the

normalised Rayleigh number r...

r =
Ra

Rac

...where Ra is the Rayleigh number of the system and where Rac is the character-

istic, critical Rayleigh number of the system, which is the Rayleigh number associated

with the onset of heat convection.
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In describing the equilibria of the Lorenz system in the previous section, we recall

that

x∗ = ±
√
b(r − 1)

y∗ = ±
√
b(r − 1)

z∗ = r − 1

So if r < 1, x∗ and y∗ aren’t even real numbers, but rather complex5 numbers. The

implications of complex numbers in the scope of eigenvalues of a Jacobian matrix of a

differential equation system are interesting, but we know that aperiodic convective

behaviour may only arise if r > 1 ( i.e. Ra > Rac).

In a strictly physical sense, the value of the normalised Rayleigh number (r) will

grow in response to a growing temperature gradient. Ed Lorenz also discovered an

obstacle due to the growth of this parameter. One of the last formulas in his paper

(derived from eigenvalue analysis of the Jacobian matrix) is given by

rH =
σ(σ + b+ 3)

σ − b− 1

This formula states that for any given aspect ratio b and any given fluid with

Prandtl number σ (where the material property is now relevant), that the critical

5Due to the behaviour of having a negative value within the square root function in both x∗ and
y∗.
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Hopf bifurcation value (rH) for r is now known! This is a natural consequence of

the fact that aperiodicity is dependent on the physical dimensions of an environment.

As long as σ > b+ 1, steady convection is unstable for sufficiently high Rayleigh

numbers. What we’ve been building up to in this entire discussion is that we can

actually force a physical system like this into an unstable regime in order

to witness how it transitions from a state of stability to instability just by

turning up the heat . Lorenz stated that chaos would be apparent if the system

reached a critical value of r, which he found to follow the equation above for a given

σ and given b, provided σ > b+ 1.

When Lorenz used σ=10 and b=8/3, the equation noted above, yielded r =

470/19 ≈ 24.74. So any value of r greater than this could very well make the entire

system aperiodic in X,Y, and Z variables. This is what is represented in the famous

plots he produced, known as the Lorenz butterfly, shown in Figure 5.6.

Putting things into perspective, if we were to actually have a slab in the geometry

of something portable like a fish tank, we could simulate this ourselves, provided

we had a heating and cooling source (see Figure 6.7). The nature of aperiodicity is

a very visual one and many researchers take pride in being able to visually show the

results of their numerical simulations. Numerically and/or experimentally reproduc-

ing Rayleigh-Bénard convection is a very rewarding effort if one decides to put the

time and energy into performing such a task.
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Reviewing the parameters...

• σ = Prandtl number (a material property). Experimenter can be more selective

in choosing a fluid that adheres to a desired systemic behaviour.

• b = 4
1+a2

= Normalised aspect ratio. (Determined by the dimensions of the

physical system)

• r = Ra
Rac

= Heat source optimisation (How severely the temperature differential

of system can be manipulated)

The Lorenz system shows that mathematics and physics can truly come together

to create intriguing and potentially useful results. We use the tools from bifurca-

tion theory in explaining why we have a transition from laminar convection to

turbulent convection, a physical phenomenon. The power of this study comes

from applying these simple models to larger, physical systems. The applicator must

retain the techniques of the results, but also keep in mind that larger systems are

proportionally more complicated.
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3

Magnetohydrodynamics

3.1 Maxwell’s Equations & Fluidic Force

In introducing the Lorenz equations and the concept of dynamical systems from

the perspective of applied mathematics, a seemingly natural convergence may be

apparent. When looking at the equations of electromagnetic properties for a fluid via

Maxwell’s equations (presented below), there may be times when the evolution of a

thermally convective state, is desired.

~∇× ~E = −d
~B

dt

~∇× ~B = µ~J



~∇ · ~E =
ρ

εo

~∇ · ~B = 0

~F = q[ ~E + (~ξ × ~B)]

From the perspective of vectorial Newtonian mechanics, the last equation trans-

lates the four coupled differential equations above it, into an understandable entity.

The electromagnetic force equation shows how an electric field ~E interacts with

a magnetic field ~B, to produce a force ~F , provided there exists a velocity of fluid flow

(~ξ) in physical space, containing particles with charge q. This generalised equation

also applies for instances with no electric field present ( ~E = 0) or instances with either

no fluid field velocity (~ξ = 0) or no magnetic field ( ~B = 0). In the most trivial case,

if there are no charges (q) present, the force contributed by the electromagnetic force

is exactly zero.

It is logical to conclude that superposition plays a role in describing this combi-

nation. It is also important to note, as it is not trivial, that these equations do not

simply contradict each other or cancel each other out. In sections to come, we see

how previous thinkers have confronted this issue, and how we can try to extend the

power of the Lorenz equations to obtain systematic behaviour given mathematical

machinery we already have.
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3.2 Ferroconvection

In studying Rayleigh - Benard convection, Barry Saltzman started with an infras-

tructure of governing equations for his problem. He knew that fluid flow would require

the Navier-Stokes equations and that any introduction of a thermal gradient would

naturally introduce Newton’s Heat equation. The subtle beauty of Saltzman’s deriva-

tion was his introduction of a non-linear mixing term, which brought convection into

the picture in the first place. It is this nonlinear behaviour which makes aperiodicity

so stark and apparent, lending itself to result in an infinite series of trigonometric

convective modes, as shown by Saltzman.

What I wish to do now with this thesis is give the reader a taste of what might

occur if we went back to Saltzman’s original set of equations and introduced one more

equation to the ensemble. Given Saltzman’s fluid and thermodynamic equations, it

can be very easily seen that the fluid can be a ferromagnetic one (such as mercury or

salt water) which obeys both fluid and thermodynamic equations. In addition to this,

a ferrofluid’s magnetic natures gives it a third master: the Maxwellian electromagnetic

equations.

Would it not, then, be possible to revisit Saltzman’s derivation and add this

additional physical property into the mathematical mix?
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3.2.1 Expanding on Saltzman’s Technique

The following definitions correspond to Saltzman’s ”Finite Amplitude Free Con-

vection as an Initial Value Problem - I”:

• x,y = horizontal coordinates

• z = vertical coordinate

• t = time (unscaled)

• ρ = density

• p = pressure

• T = temperature

• ε = coefficient of volume expansion

• κ = coefficient of thermal diffusivity

• ν = kinematic viscosity

• Ψ = streamfunction

We know that within the Oberbeck-Boussinesq approximation, fluid flow is taken

to be incompressible. In addition, Saltzman states that “the problem is simplified by

constraining convective rolls to develop in the x-z plane (v = ∂/∂y = 0)”, assuming

the problem is situated in a standard 3-D cartesian coordinate system.
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The governing equations are...

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+
∂P

∂x
− ν∇2u = 0

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+
∂P

∂z
− gεT1 − ν∇2w = 0

∂T1

∂t
+ u

∂T1

∂x
+ w

∂T1

∂z
− κ∇2T1 = 0

∂u

∂x
+
∂w

∂z
= 0

u = −∂ψ
∂z
, w =

∂ψ

∂x

When the vorticity (ω = ∇ψ2, where commonly ~ω = ~∇ × ~ξ) of the fluid flow is

taken into account, instead of direct cartesian velocities, some simplifications may be

made. The final equations of Saltzman are

∂

∂t
∇2ψ − ∂ψ

∂z

∂

∂x
∇2ψ +

∂ψ

∂x

∂

∂z
∇2ψ − gε∂θ

∂x
− ν∇4ψ = 0

∂θ

∂t
− ∂ψ

∂z

∂θ

∂x
+
∂ψ

∂x

∂θ

∂z
− ∆To

H

∂ψ

∂x
− κ∇2θ = 0

where, ∇4ψ = ∇2∇2ψ = ∂4ψ/∂x4 + ∂4ψ/∂z4 + 2 ∂4ψ
∂x2z2

. ∇4 is known as the

biharmonic operator.
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Saltzman then states: “We can introduce a further notational simplication by

writing the non-linear advective terms in the form of a Jacobian operator”

∂(a, b)

∂(x, z)
=

(
∂a

∂x

∂b

∂z
− ∂b

∂x

∂a

∂z

)
Finally giving us:

∂

∂t
∇2ψ − ∂(ψ,∇2ψ)

∂(x, z)
− gε∂θ

∂x
− ν∇4ψ = 0

∂θ

∂t
− ∂(ψ, θ)

∂(x, z)
− ∆To

H

∂ψ

∂x
− κ∇2θ = 0

dT

dt
= κ∇2T

Lorenz then continues where Saltzman leaves off by expanding these equations

using double Fourier series. Lorenz takes the highest order terms of this expansion

and uses them to construct the terms in the system of three non-linear differential

equations.

3.3 Magnetic Induction equation

The magnetic induction equation is a consequence of the mathematical ma-

nipulation of Maxwell’s Equations. Shown below, the form exists in nature, and is

thus expressed in three spatial coordinates and one time coordinate components.
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d ~B(x, y, z, t)

dt
= ~∇× (~ξ × ~Bo) + η∇2 ~Bo (3.1)

What makes this equation intriguing is that as long as there is a continuous flow

of fluid velocity (~ξ) and an ambiant magnetic field ( ~Bo), either due to a current in a

wire or due to a magnet, there will be a change in the system-wide magnetic field.

By Maxwell’s Equations, this will generate a ~∇× ~E effect. This phenomenon in turn

will provide an induced electric field which contributes to the system’s magnetic field

in the first place. Since there is no such thing as free energy, we realize that we need

a source of velocity in the first place, to guarantee this can occur. Fortunately, we

recall that thermal convection gives way to fluid velocity fluctuations.

3.4 Self-Sustaining Flows

Self-sustaining means that if heat and magnetic energy is sufficient (contributed

by a thermal gradient, which in turn sustains the system’s magnetic field), then we

can have a chaotic flow in a ferrofluid. The reader should combine what he or she

has already read about thermal convection to see how this is true. Kinetic dynamo

theory is used to approximate some ideal flows of this type.

d ~B

dt
= ~∇× (~ξ × ~Bo) + η∇2 ~Bo (3.2)

The equation above states that a velocity field ~ξ will cause a change in a magnetic

field due to the advection of the fluid with a previously present magnetic field ~Bo. In
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addition, when ~ξ = ~0, the equation is reduced to

d ~B

dt
= η∇2 ~Bo

which is very much analogous to the diffusion equation for heat, if the operator is

acting on real, physical field. The Laplacian operator is responsible for the dissipation

of a field’s energy.

The more mathematically complicated term [~∇×(~u× ~B)] was studied considerably

by Alfen in the early 20th century. His work is manifested in what is now known as

Alfen’s Theorems. The background required to properly approach this aspect of

the magnetic induction equation is beyond the scope of this thesis and will be studied

at a future date.
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4

Conclusions

This thesis has covered the analytical consequences of including terms to the

Lorenz equations. However insightful, I feel that a more in-depth look at these con-

cepts from the vantage point of numerical simulations is necessary.

What was once an impossible task is now possible. Thanks to the advent of

computing and even faster processing for complex problems, computational physics

and fluid mechanics go hand-in-hand. The interpretation of both complex analytic

equations and intricate numerical codes by human researchers is necessary to achieve

these goals.
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